【机器学习】电子书 - 百面_机器学习 算法工程师带你去面试。清晰版带书签-数据科学与AI电子书论坛-IT电子书-IT面试吧

【机器学习】电子书 - 百面_机器学习 算法工程师带你去面试。清晰版带书签

该帖子部分内容已隐藏
付费阅读
金币 3
此内容为付费阅读,请付费后查看

书籍封面

书籍目录

版权信息

内容提要

推荐序

前 言

人工智能的三次浪潮

机器学习算法工程师的自我修养

第1章 特征工程

01 特征归一化

02 类别型特征

03 高维组合特征的处理

04 组合特征

05 文本表示模型

06 Word2Vec

07 图像数据不足时的处理方法

第2章 模型评估

01 评估指标的局限性

02 ROC曲线

03 余弦距离的应用

04 A/B测试的陷阱

05 模型评估的方法

06 超参数调优

07 过拟合与欠拟合

第3章 经典算法

01 支持向量机

02 逻辑回归

03 决策树

第4章 降维

01 PCA最大方差理论

02 PCA最小平方误差理论

03 线性判别分析

04 线性判别分析与主成分分析

第5章 非监督学习

01 K均值聚类

02 高斯混合模型

03 自组织映射神经网络

04 聚类算法的评估

第6章 概率图模型

01 概率图模型的联合概率分布

02 概率图表示

03 生成式模型与判别式模型

04 马尔可夫模型

05 主题模型

第7章 优化算法

01 有监督学习的损失函数

02 机器学习中的优化问题

03 经典优化算法

04 梯度验证

05 随机梯度下降法

06 随机梯度下降法的加速

07 L1正则化与稀疏性

第8章 采样

01 采样的作用

02 均匀分布随机数

03 常见的采样方法

04 高斯分布的采样

05 马尔可夫蒙特卡洛采样法

06 贝叶斯网络的采样

07 不均衡样本集的重采样

第9章 前向神经网络

01 多层感知机与布尔函数

深度神经网络中的激活函数

03 多层感知机的反向传播算法

04 神经网络训练技巧

05 深度卷积神经网络

06 深度残差网络

第10章 循环神经网络

01 循环神经网络和卷积神经网络

02 循环神经网络的梯度消失问题

03 循环神经网络中的激活函数

04 长短期记忆网络

05 Seq2Seq模型

06 注意力机制

第11章 强化学习

01 强化学习基础

02 视频游戏里的强化学习

03 策略梯度

04 探索与利用

第12章 集成学习

01 集成学习的种类

02 集成学习的步骤和例子

03 基分类器

04 偏差与方差

05 梯度提升决策树的基本原理

06 XGBoost与GBDT的联系和区别

第13章 生成式对抗网络

01 初识GANs的秘密

02 WGAN:抓住低维的幽灵

03 DCGAN:当GANs遇上卷积

04 ALI:包揽推断业务

05 IRGAN: 生成离散样本

06 SeqGAN:生成文本序列

第14章 人工智能的热门应用

01 计算广告

02 游戏中的人工智能

03 AI在自动驾驶中的应用

04 机器翻译

05 人机交互中的智能计算

后记

作者随笔

参考文献

下载地址

请登录后发表评论

    没有回复内容